skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moya, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. The Deep Operator Network (DeepONet) framework is a different class of neural network architecture that one trains to learn nonlinear operators, i.e., mappings between infinite-dimensional spaces. Traditionally, DeepONets are trained using a centralized strategy that requires transferring the training data to a centralized location. Such a strategy, however, limits our ability to secure data privacy or use high-performance distributed/parallel computing platforms. To alleviate such limitations, in this paper, we study the federated training of DeepONets for the first time. That is, we develop a framework, which we refer to as Fed-DeepONet, that allows multiple clients to train DeepONets collaboratively under the coordination of a centralized server. To achieve Fed-DeepONets, we propose an efficient stochastic gradient-based algorithm that enables the distributed optimization of the DeepONet parameters by averaging first-order estimates of the DeepONet loss gradient. Then, to accelerate the training convergence of Fed-DeepONets, we propose a moment-enhanced (i.e., adaptive) stochastic gradient-based strategy. Finally, we verify the performance of Fed-DeepONet by learning, for different configurations of the number of clients and fractions of available clients, (i) the solution operator of a gravity pendulum and (ii) the dynamic response of a parametric library of pendulums. 
    more » « less